Abstract

In this study, the finite volume method and the SIMPLER algorithm is employed to investigate forced convection and entropy generation of Cu-water nanofluid in a parallel plate microchannel. There are four obstacles through the microchannel, and the slip velocity and temperature jump boundary conditions are considered in the governing equations to increase the accuracy of modeling. The study is conducted for the Reynolds numbers in the range of 0.1<Re<10, Knudsen numbers ranging of 0<Kn<0.1, and volume fraction of nanoparticles ranging of 0<φ

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call