Abstract

An experimental visualization study was performed to investigate the dependence of the pressure hill height and the influence zone expanse, for flow past a spiked body with different nose configurations, over a Reynolds number range from 2278 to 4405 to establish the vortex shedding process, and applicability in low speed flow regime for effective pressure reduction. It is found that the spike reduces the radius of curvature of the approaching streamline, leading to the deflection of the streamlines towards the shoulder of the basic body, resulting in a narrow zone of the positive pressure hill at the body nose. It is also observed that the pressure hill length and the influence zone expanse decrease with the introduction of spike over the present range of Reynolds numbers. For Reynolds numbers less than 2700, spike with conical nose is found to be more efficient than the spikes with other nose shapes of the present study in reducing the positive pressure at the nose of the blunt body. For higher Reynolds numbers, greater than 2700, the size of the vortex at the junction of the spike and basic body is the largest for the spike with hemispherical nose, and emerges as a potential candidate for application in possible wind-design resistant structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.