Abstract

The velocity field around a vibrating cantilever plate was experimentally investigated using phase-locked particle image velocimetry. Experiments were performed at Reynolds numbers of Reh = 101, 126 and 146 based on the tip amplitude and the speed of the cantilever. The averaged vector fields indicate a pseudo-jet flow, which is dominated by vortical structures. These vortical structures are identified and characterized using the continuous wavelet transform. Three-dimensional flow features are also clearly revealed by this technique. Furthermore, proper orthogonal decomposition was used to investigate regions of vortex production and breakdown. The results show clearly that the investigation of phase-averaged data hides several key flow features. Careful data post-processing is therefore necessary to investigate the flow around the vibrating cantilever and similar highly transient periodic flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.