Abstract

Based on the theory of gas lubrication and elastic mechanics, a theoretical model of gas-elastic coupling lubrication of compliant foil face gas seal (CFFGS) is presented. The correlation between the film pressure and thickness of CFFGS and its effect on the flow field are investigated, and the differential effect of pressure conditions on the flow field and sealing performance is analyzed. Also explored the influence law of operating and structural parameters on sealing performance. Results show that CFFGS have stable and excellent leakage control performance, and the pressure forms has a differential effect on the coordination mechanism of film pressure-deformation-film thickness and the sealing performance. Moreover, compliant foil structure has a positive impact on the end-face adaptive capability and leakage control performance of the seal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call