Abstract

Flow excursion-induced dryout at low heat flux natural convection boiling, typical of liquid metal fast breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of the Ledinegg instability, leading to flow excursion and subsequent dryout in agreement with experimental data. A flow regime-dependent critical heat flux relationship based upon a saturated boiling criterion is also presented. Transient analyses indicate that premature flow excursion cannot be ruled out and the boiling process is transient dependent. Analysis of a loss-of-flow transient at high heat flux forced convection shows a significantly faster flow excursion leading to dryout, which is in excellent agreement with the results of the two-dimensional THORAX code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call