Abstract
Given an edge-capacitated undirected graph G = ( V , E , C ) with edge capacity c : E ↦ R + , n = | V | , an s − t edge cut C of G is a minimal subset of edges whose removal from G will separate s from t in the resulting graph, and the capacity sum of the edges in C is the cut value of C. A minimum s − t edge cut is an s − t edge cut with the minimum cut value among all s − t edge cuts. A theorem given by Gomory and Hu states that there are only n − 1 distinct values among the n ( n − 1 ) / 2 minimum edge cuts in an edge-capacitated undirected graph G, and these distinct cuts can be compactly represented by a tree with the same node set as G, which is referred to the flow equivalent tree. In this paper we generalize their result to the node-edge cuts in a node-edge-capacitated undirected planar graph. We show that there is a flow equivalent tree for node-edge-capacitated undirected planar graphs, which represents the minimum node-edge cut for any pair of nodes in the graph through a novel transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.