Abstract
Applying the method of continuous unitary transformations to a class of Hubbard models, we reexamine the derivation of thet/U expansion for the strong-coupling case. The flow equations for the coupling parameters of the higher order effective interactions can be solved exactly, resulting in a systematic expansion of the Hamiltonian in powers oft/U, valid for any lattice in arbitrary dimension and for general band filling. The expansion ensures a correct treatment of the operator products generated by the transformation, and only involves the explicit recursive calculation of numerical coefficients. This scheme provides a unifying framework to study the strong-coupling expansion for the Hubbard model, which clarifies and circumvents several difficulties inherent to earlier approaches. Our results are compared with those of other methods, and it is shown that the freedom in the choice of the unitary transformation that eliminates interactions between different Hubbard bands can affect the effective Hamiltonian only at ordert3/U2 or higher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.