Abstract

The Heisenberg spin-S quantum antiferromagnet is studied near the large-spin limit, applying a new continuous unitary transformation which extends the usual Bogoliubov transformation to higher order in the 1/S-expansion of the Hamiltonian. This allows to diagonalize the bosonic Hamiltonian resulting from the Holstein-Primakoff representation beyond the conventional spin-wave approximation. The zero-temperature flow equations derived from the extension of the Bogoliubov transformation to order \(\) for the ground-state energy, the spin-wave velocity, and the staggered magnetization are solved exactly and yield results which are in agreement with those obtained by a perturbative treatment of the magnon interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.