Abstract

A class of asymptotically free scalar theories with O(N) symmetry, defined via the eigenpotentials of the Gaussian fixed point (Halpern-Huang directions), are investigated using renormalization group flow equations. Explicit solutions for the form of the potential in the nonperturbative infrared domain are found in the large-N limit. In this limit, potentials without symmetry breaking essentially preserve their shape and undergo a mass renormalization which is governed only by the renormalization group distance parameter; as a consequence, these scalar theories do not have a problem of naturalness. Symmetry-breaking potentials are found to be ``fine-tuned'' in the large-N limit in the sense that the nontrivial minimum vanishes exactly in the limit of vanishing infrared cutoff: therefore, the O(N) symmetry is restored in the quantum theory and the potential becomes flat near the origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.