Abstract

Flow effects on chemical reactions at a solid-liquid interface are fundamental to diverse technological applications but remain poorly understood from a molecular perspective. In this work, we demonstrate that the coupling between laminar flow and surface chemistry can be adequately described using classical density functional theory for ion distributions near the surface in conjunction with kinetics modeling and the Navier-Stokes equation. In good agreement with recent experiments, we find that flowing of fresh water over a silica surface may result in drastic changes in the rate of silica dissolution and, consequently, the surface charge density and the interfacial structure. A nonlinear streaming current is predicted when the surface reactions are disturbed by a laminar flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.