Abstract

The dynamics and geomorphological development of a trough blowout located at Fiona Beach in the Myall Lakes National Park in NSW, Australia are examined. Wind velocities and flow structure were measured utilising an array of miniature Rimco cup anemometers, Gill bi-vane and UVW instruments, and wind vanes. Flow measurements indicate that when the wind approaches the trough blowout parallel to the throat orientation, jets occur both in the deflation basin and along the erosional walls, relative flow deceleration and expansion occur up the depositional lobe, jets are formed over the depositional lobe crest accompanied by downwind flow separation on the leeward side of the lobe, and flow separation and the formation of corkscrew vortices occur over the crests of the erosional walls. Maximum erosion and transport occur up the deflation basin and onto the depositional lobe. Trough blowout morphologies are explained as a function of these flow patterns. When the wind approaches the blowout obliquely, the flow is steered considerably within the blowout. The degree and complexity of topographic steering is dependent on the blowout topography. The flow is usually extremely turbulent and large corkscrew vortices are common. The local topography of a blowout can be very important in determining flow patterns, overall sand transport and blowout evolutionary conditions and paths. Estimates of potential sand transport within the blowout may be up to two orders of magnitude lower than actual rates if remote wind data are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.