Abstract

Simulation of flow diverter (FD) treated aneurysm can evaluate treatment efficacy and aid treatment planning. However, explicit modeling of thin wires of FD impose extremely high demand of computational resources and time, which limit its use in time-sensitive presurgical planning. One alternative approach is to model FD as homogenous porous medium, which saves time but with compromise in accuracy. We proposed a new method to model FD as heterogeneous and anisotropic porous medium whose properties were determined from local porosity. The new method was validated by comparing with PIV measurement from an in-vitro phantom. Simulation result was in good agreement with experimental measurement. Four patient cases were further analyzed to compare the new method with the homogenous porous media method. Results showed that in patient cases with curved artery, new method was preferred over the homogenous method, as the assumption of homogenous porosity led to overpredicted flow reduction effect by as much as 87.9%, which may lead to overoptimistic decision making and poor prognosis. Our new method can provide timely and accurate simulation to aid in the treatment planning of aneurysms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call