Abstract

Blanket system is one of the most important systems in a fusion reactor, which plays an important role in heat removing, radiation shielding and tritium breeding. Water-cooled ceramic breeder (WCCB) blanket module (BM) is one of tritium breeding blanket module concepts for Chinese Fusion Engineering Testing Reactor. According to the preliminary design of WCCB BM, there are complicated cascade and parallel cooling channels, in which maybe exists the nonuniform distribution of flow rate, and resulting adverse effect on heat transfer and safety. In this paper, the whole model of one BM is built by thermal hydraulic analytical code named Relap 5 and the flow distribution issue of water-cooled solid breeder (WCSB) test blanket module (TBM) is analyzed. The systematic analysis results show that the flow rate differences of most parts of the WCSB TBM are less than 4 % in a steady state. Start-up, operational transient and loss of flow accident are also studied, and flow instability in these transient cases is found and needs for further analysis. Three dimensional local model of First Wall is also built by CFX, to investigate flow characteristics at partial WCSB TBM, which shows that flow distribution calculated by CFX is consistent with the results from the thermal hydraulic analytical code. Both of the results of the steady state and transient analysis show that the thermal hydraulic analytical code is appropriate in analyzing the flow distribution and transient issue from the systematic view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call