Abstract
Endothelial cells are constantly exposed to high or low shear stress in arteries and veins by the flowing blood. Angiopoietin-2 (Ang-2) is acting as a critical regulator of vessel maturation and endothelial cell quiescence. In this study, flow-dependent regulation of Ang-2 was analyzed in vitro and in vivo. Ang-2 mRNA, protein expression and release was upregulated by 24 h of low (1 dyne/cm(2)), but downregulated by high flow (30 dyne/cm(2)) in human endothelial cells. Increased endothelial NO synthase expression and NO formation was not affecting regulation of Ang-2 by low or high flow. Low and high flow increased VEGF-A expression. Inhibition of VEGFR-2 prevented upregulation of Ang-2 by low flow, but not downregulation of Ang-2 by high flow. Furthermore, upregulation of Ang-2 by VEGF was reduced by application of high flow. Forkhead box O (FOXO) transcription factor FOXO1 has been shown to regulate Ang-2 expression in endothelial cells. FOXO1 binding activity was reduced by high flow. Nuclear localization of transcription factor FOXO1 was not changed by low flow, but reduced by high flow. In vivo, Ang-2 was higher expressed in veins compared to arteries. Arterial ligation augmented Ang-2 expression in distal arterial low flow areas. Our results support a VEGF-dependent induction of Ang-2 in low flow areas, and FOXO1-dependent downregulation of Ang-2 in high flow areas. These data suggest a new mechanism of flow-dependent regulation of vessel stability and differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.