Abstract

AbstractStudies in animal models have shown that plasminogen activators bound to erythrocytes (RBC-PA) have an extended lifetime in the circulation and are safer than free PAs. RBC-PAs incorporate into nascent thrombi, which are focally lysed from within, an attractive thromboprophylactic option. In static systems, RBC-PAs cleave surrounding fibrin fibers, forming pores larger than the cells themselves, and move around the pore edges, enlarging them until eventual clot dissolution. We hypothesized that under flow in blood vessels, RBC-PAs form functional patent channels before clot dissolution. Here we used perfusion chambers to study clot lysis by RBC-PAs under static versus arterial and venous flow conditions. We found that flow decelerates bulk clot lysis but quickly generates patent channels filled with passing RBCs, via pore enlargement and merging in the direction of flow. Formation of such channels by RBC-PAs may help rescue ischemic tissue before bulk dissolution of potentially occlusive clots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.