Abstract

Over the past years, products of non-animal origin have been increasingly linked to foodborne diseases caused by the enterohemorrhagic pathogen Escherichia coli O157:H7. Contaminated fresh produce and derived ready-to-eat meals are of major concern, since no further or only minimal processing is applied. In this study, flow cytometry was evaluated as a rapid technique to detect E. coli O157:H7 by immunofluorescence, using polyclonal antibodies conjugated to R-phycoerythrin, in refrigerated ready-to-eat pasta salad containing acetic acid and benzoic acid. Signal filtering strategies were applied during sample analysis to reduce the limit of detection of the technique to 5 logCFU/g. Simultaneously with pathogen detection, physiological state was assessed by staining with the membrane integrity indicators propidium iodide and SYBR Green I. Fine tuning of dye concentrations and ratios allowed discrimination of not only cells with intact or damaged membranes, but also of cells with partially damaged membranes, which were considered injured cells. Then, changes in membrane integrity of inoculated E. coli O157:H7 cells were monitored throughout 14-day refrigerated storage. Most cells were injured at the beginning of refrigeration, but showed an intact membrane at the end. This suggests that injured E. coli O157:H7 cells underwent a membrane repair during exposure to refrigeration and acid stresses, and survived in ready-to-eat pasta salad. This highlights the importance of the implementation of control measures to limit the presence of this pathogen in non-animal origin food products. Additionally, the proposed immunodetection and membrane integrity three-color assay in food is a good tool to monitor the effect of a number of food-related treatments on E. coli O157:H7 cell membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.