Abstract

Single-nucleotide polymorphisms (SNPs) are the most abundant type of human genetic variation. These variable sites are present at high density in the genome, making them powerful tools for mapping and diagnosing disease-related alleles. We have developed a sensitive and rapid flow cytometry-based assay for the multiplexed analysis of SNPs based on polymerase-mediated primer extension, or minisequencing, using microspheres as solid supports. The new method involves subnanomolar concentrations of sample in small volumes (∼10 μl) which can be analyzed at rates of one sample per minute or faster, without a wash step. Further, genomic analysis using multiplexing microsphere arrays (GAMMArrays), enables the simultaneous analysis of dozens, and potentially hundreds of SNPs per sample. We have tested the new method by genotyping the Glu69 variant from the HLA DPB1 locus, a SNP associated with chronic beryllium disease, as well as HLA DPA1 alleles using the multiplexed method. The results demonstrate the sensitivity and accuracy of flow cytometry-based minisequencing, a powerful new tool for genome- and global-scale SNP analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.