Abstract

Mitochondrial protein import is typically measured by adding radiolabeled precursor proteins to isolated mitochondria. We have developed a novel, high-throughput method for measuring protein import in live differentiated PC12 cells using a tetracycline (Tet) regulated, nuclear encoded, mitochondrially-targeted GFP fusion protein and flow cytometry. We generated a PC12 cell line stably transfected with an inducible GFP fusion protein (GFPmt) targeted to mitochondria. GFPmt PC12 cells were treated with NGF for one week to induce neuronal differentiation in the presence of Tet to silence GFP expression. On day seven GFPmt expression was induced by removal of Tet and these "GFP-on" cells were exposed to sublethal levels of CCCP (2 microM) for 24 h. At 24 h, the cells were harvested in Ca(++)-free PBS and the GFPmt signal in live intact cells was measured using flow cytometry. Since GFPmt is not fluorescent prior to being imported into mitochondria, the GFPmt signal reflected only GFPmt imported to mitochondria. PI was used to gate out contributions from dead cells. Turnover of GFPmt in mitochondria was also assessed; in this case, Tet was added to arrest GFPmt expression in GFP-on cells, and the subsequent decline of the fluorescent signal, in the absence of any new GFP synthesis, was measured by flow cytometry. Exposure to 2 microM CCCP for 24 h caused a 61% +/- 0.4 decline in GFPmt fluorescence compared to controls. This decline corresponded to a 30% +/- 7 decrease in GFPmt protein levels measured by Western blot of mitochondrial fractions, and a 72% +/- 5 decline in the import of newly synthesized GFPmt to mitochondria over a 1 h period 24-h after addition of 2 microM CCCP measured by autoradiography. CCCP partially depolarized mitochondria but was not lethal for up to five days. This novel GFP-based flow cytometry assay is a rapid and sensitive technique for quantifying protein import to mitochondria in live neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.