Abstract

Standard materials of a small defined number of cells with colony-forming potentiality are essential for the rational validation of food microbiological methods. An in situ flow cytometric method using viable staining with 6-carboxyfluorescein diacetate (CFDA) and tryptic soy agar (TSA) was previously proposed and its feasibility was demonstrated with five strains. In this study, this method was applied to 16 strains to support its broad applicability. The cell sorting gate was previously determined based on the CFDA stainability alone. Now the structural properties of cells designated by forward and side-scattering intensities have been introduced as the second gating criteria. Under the optimum gate condition, 100 cells have been selected and sorted on TSA. Consequently, a 95% or higher colony-forming rate has been attained for every strain. A successful application to microaerophilic Campylobacter spp. is especially of great importance because it suggests further broader applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call