Abstract

Labelling of DNA in replicating cells using 5-bromo-2´-deoxyuridine (BrdU) is widely used, however the rapid clearance and metabolisation of BrdU in the living organism is a critical issue. Although the pharmacokinetic of BrdU in experimental animals is empirically approximated, the exact time-curve remains unknown. Here we present novel method for estimation of the BrdU content in the blood serum. The application is based on the in vitro cocultivation of tumour cells with the examined serum and the subsequent quantification of the incorporated BrdU in the DNA using flow cytometry analysis. Our results demonstrate that this approach can quantify the BrdU concentration in serum at 1 micromol.dm(-3) and might represent an attractive alternative to conventional chromatographic analysis. The employment of tumour cells as "detectors" of the BrdU content in serum provides an advantage over high pressure liquid chromatography (HPLC), as this approach allows us to approximate not only the concentration of BrdU, but also to determine, whether BrdU is present in the blood serum in effective concentration to reliable label all cells undergoing the S-phase of the cell cycle. The presented application might be a helpful tool for studies on pharmacokinetics of BrdU or other thymidine analogues when testing various administration routes or protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.