Abstract

A novel class I-peptide-binding assay was developed and used to identify a series of peptides derived from the human p53 tumor-suppressor gene product capable of binding the HLA-A2 class I allele. Brief pH 3.3 acid treatment of human cell lines rapidly denatures pre-existing class I complexes, as detected by loss of binding of conformation-dependent mAbs, leaving only free class I heavy chains associated with the viable cell surface. These heavy chains may be induced to refold and be recognized by antibodies (in 2–4 hours) when acid-treated cells are coincubated with exogenous ß 2-microglobulin and peptides capable of binding the relevant class I allele examined. This assay, with a detection limit of 1–10 nM peptide, was used to screen the capacity of a panel of nine peptides bearing HLA-A2-binding motifs and derived from the human p53 tumor-suppressor protein sequence. Eight of the nine peptides bound to, and reconstituted, HLA-A2 on acid-treated cells. This assay system will enable the rapid identification of peptides binding to any class I allele, which is the initial prerequisite for elucidating potential CD8 + T-cell epitopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call