Abstract

The protein and DNA contents of mouse myeloid leukemia M1 (clone B24) cells were determined by flow cytometry (FCM) after double fluorescent staining of the cells with fluorescein isothiocyanate and propidium iodide. FCM analysis showed that there was a linear relationship between the DNA and protein contents in logarithmically growing cells, although the protein content showed some variation. B24 cells can be induced to differentiate into macrophage-like cells by treatment with a protein inducer(s) in conditioned medium (CM) of hamster embryo cells. When the cells were treated with various concentrations of CM, cells with a 2C DNA content, G1/0 cells, increased and protein accumulated in these G1/0 cells. The increases in the number of G1/0 cells and in their protein content per cell were proportional to the concentration of CM. Serial analysis of changes in the contents of DNA and protein in differentiating B24 cells showed that DNA synthesis was suppressed by differentiation-induced block of the cell cycle at the G1/0 phase, whereas increase in the protein content was not completely suppressed by block of the cell cycle. These results suggest that unbalanced control of the DNA and protein contents of B24 cells is involved in the mechanisms of the morphological changes during differentiation into macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call