Abstract

Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined flow cytometry panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue is currently lacking. The objective of this study was to develop a flow cytometry-based panel for human BAL and lung tissue. We obtained and performed flow cytometry/sorting on human BAL cells and lung tissue. Confocal images were obtained from lung tissue using antibodies for cluster of differentiation (CD)206, CD169, and E cadherin. We defined a multicolor flow panel for human BAL and lung tissue that identifies major leukocyte populations. These include macrophage (CD206(+)) subsets and other CD206(-) leukocytes. The CD206(-) cells include: (1) three monocyte (CD14(+)) subsets, (2) CD11c(+) dendritic cells (CD14(-), CD11c(+), HLA-DR(+)), (3) plasmacytoid dendritic cells (CD14(-), CD11c(-), HLA-DR(+), CD123(+)), and (4) other granulocytes (neutrophils, mast cells, eosinophils, and basophils). Using this panel on human lung tissue, we defined two populations of pulmonary macrophages: CD169(+) and CD169(-) macrophages. In lung tissue, CD169(-) macrophages were a prominent cell type. Using confocal microscopy, CD169(+) macrophages were located in the alveolar space/airway, defining them as alveolar macrophages. In contrast, CD169(-) macrophages were associated with airway/alveolar epithelium, consistent with interstitial-associated macrophages. We defined a flow cytometry panel in human BAL and lung tissue that allows identification of multiple immune cell types and delineates alveolar from interstitial-associated macrophages. This study has important implications for defining myeloid cells in human lung samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call