Abstract

No unified immunophenotypic profiles and corresponding analytic strategies have been established for the rapid diagnosis of acute promyelocytic leukemia (APL) using flow cytometry (FCM). Here we describe a characteristic immunophenotypic panel that can rapidly and accurately distinguish APL from other types of adult acute myeloid leukemia (AML) using only FCM. By comparing APL cells and non-APL AML cells that share APL common immunophenotypes (CD34−CD117+HLA−DR−) we found that CD64 was a significant factor that differentiated APL from other AMLs. Further retrospective analyses of 205 APL and 629 non-APL AML patients from different hematology centers showed that either the CD64dim and homoCD13+homo CD33+homoMPO+ (myeloperoxidase) CD11c− panel or the CD64dim and homoCD13+homo CD33+homoMPO+ CD11c+CD10−CD117+ SSChigh (high side scatter signal) panel could distinguish APL from non-APL AML patients with nearly 100% sensitivity, specificity and accuracy. Moreover, relative quantification of CD64 expression enhanced the applicability of our APL diagnostic immunophenotypic panels (ADI-panels) in different hematology centers. Application of the ADI-panels will decrease diagnosis time and improve personalized treatment for APL, a life-threatening disease with very rapid progression.

Highlights

  • Acute promyelocytic leukemia (APL) is a highly aggressive disease that accounts for 6−8% of all adult acute myeloid leukemia (AML) [1]

  • Non-acute promyelocytic leukemia (APL) AML cases with high expression of CD34, HLA-DR and/or cluster differentiation 117 (CD117) are more differentiated from APL

  • Seventy-three patients identified as APL or AML with APL-like immunophenotypes were selected from 323 AML patients in Changhai Hospital, in which only 12.4% (40/323) were confirmed as having APL (Table 1)

Read more

Summary

Introduction

Acute promyelocytic leukemia (APL) is a highly aggressive disease that accounts for 6−8% of all adult acute myeloid leukemia (AML) [1]. Childhood APL accounts for approximately 10% of AML in the United States and nearly 30% in China [2]. Without prompt early diagnosis and highly effective intervention with all-trans retinoic acid, APL typically develops with an accompanying risk of life-threatening coagulopathy. Leukemia diagnosis relies on combinatorial analyses of morphology, immunology, cytology, and molecular biology (MICM). Fluorescence in situ hybridization (FISH) and reverse transcriptase-polymerase chain reaction (RT-PCR) analyses for the detection of abnormal RARα fusion genes (e.g. PML-RARα, NPM-RARα) are typically performed only on suspicious cases [3, 4]. Cytogenetic analysis of the t(15;17)(q22;q21) and other rare variant chromosome translocations using karyotyping is timeconsuming and limited by the number of leukemia cells in collected specimens

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call