Abstract

A WIG (Wing In Ground effect) vehicle is expected to be one of the promising super-high speed craft in the next generation. A WIG is characterized by a high lift to drag ratio and a backward shift of aerodynamic centre in close proximity to the ground, hence estimating their features accurately is very important in design and safety evaluation. In the present investigation, flows around a three-dimensional wing with end-plates in ground effect are computed by a Navier-Stokes solver. Because of the geometric complexity of the configuration, a multi-block technique is used. In order to clarify the aerodynamic interaction between the wing and the ground, two boundary conditions on the ground are considered, that is case 1) velocity is equal to the uniform flow and case 2) no slip condition. They correspond to an actual operating condition and a wind-tunnel condition with a ground plate respectively. The flows with different ground heights are computed by the solver. Results are compared with experimental data and the aerodynamic characteristics in ground effect are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.