Abstract

Traditional spinning systems are reaching profitability limits due to high production costs and low productivity. Pneumatic spinning is seen as a developing system; its productivity is much higher than that achieved by conventional systems. This paper evaluates one of the main factors that prevents an increase of productivity in pneumatic spinning. This is the air currents generated at the drafting cylinder entrance, which interact with the incoming fibers, diverting them from their expected path. Using laser anemometry, the airflow velocity distribution around drafting cylinders has been measured and it has been found that vorticity is created at the cylinder entrance. Extensive CFD simulation on the airflow drag by the cylinders has given a clear insight into the vortex created, producing valuable information on how cylinder design affects the vorticity created. It has been found experimentally that the use of a drafting cylinder with holes in it produced good results, reducing the air currents and allowing a sharp increase in yarn quality, as well as an increase in productivity. A study of vortex kinematics has been undertaken, bringing a better understanding of vortex creation, development, and breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.