Abstract

The paper reports investigations on the chip on glass (COG) bonding process using anisotropic conductive films (ACF). Experimental methods as well as theoretical analyses, by both analytical and numerical means, are applied. The assumptions concerning the thermo-mechanical and rheological properties of the polymer materials involved in the bonding process are characterized for dependence on temperature. The transient development of the temperature field during the bonding process is studied by finite element (FE) analysis for dependence on the upper and lower chuck temperatures. Analytical techniques of fluid mechanics are used to predict the flow of the conductive particles during bonding, treated as dimensionless points embedded in a viscous matrix. This analytical description allows one to estimate the number of conducting particles on a bump of a chip after bonding. Furthermore, numerical calculations are applied to characterize the influence of viscosity gradients on the particle flow. Finally, nonlinear finite element simulations are used to investigate the stress development and stress relaxation process within the ACF joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call