Abstract

Marangoni convection, driven by an interfacial instability due to a surface tension gradient, presents a significant problem in crystal growth in normal microgravity environments. It is important to suppress and control the convection phenomenon for better material processing, especially in crystal growth by the liquid encapsulated Czochralski or liquid encapsulated floating zone techniques, in which the melt is encapsulated in an immiscible medium. Marangoni convection can occur on the liquid-liquid interface and on the gas-liquid free surface. Buoyancy driven convection can also affect and complicate the flow. In the study we report here, experiments were carried out with two liquid layers, silicone oil and fluorinert, in an open and enclosed rectangular cavity. The flow in the cavity was subjected to a horizontal temperature gradient. The interactive flow near the liquid-liquid interface was measured by the particle image velocimetry technique. The measured flow field is in agreement with numerical predictions. Free surface fluctuations with several dominant frequencies were also measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.