Abstract
A computational method is used to analyze the viscous flow in the spiral grooves of the molecular drag pump of Holweck type. The flow is assumed in the slip flow regime and, thus, the slip boundary condition is imposed at walls. Tests are conducted to examine the effects of clearance gap, spiral angle, channel height, number of channels, and rotating speed. The appearance of clearance brings about lower pressure gradient between side walls of the channel and, thus, reduces the pressure rise in the channel. Testing on spiral angle and channel height indicates that these parameters need to be optimized to achieve better performance. Results also reveal that increase of rotating speed is an effective way to promote compression ratio. In calculations, pressure rise is enhanced when the number of channel is decreased. However, it should be understood that by reducing channel number the cross-sectional area of the channel is decreased, which has the effects of reducing the pressure rise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.