Abstract

Abstract Foam is widely used in fractured reservoirs. The flow characteristics in complex fracture networks are still unclear, and there are few numerical simulations of foam fluid flow in fractures. In this study, a variety of combined visual fracture models were used to observe the flow characteristics of foam in the fracture. Firstly, based on the parallel fracture model, the foam flow characteristics under different fracture depths were explored, and then based on the complex fracture network model, the foam flow path and sweep efficiency are evaluated. Finally, the Dijkstra’s algorithm was used to determine the weighted graph of the fracture network nodes, and the preferred flow paths of the foam were predicted. The results show that when foam flows in parallel fractures with different depths, it preferentially flows in high permeability (100 μm) fractures, and there is gas trapping in low permeability (50 μm) fractures. In the irregular fracture network model, the sweep efficiency of the foam fluid is greatly affected by the foam quality, and the sweep volume is the widest when the foam quality is about 90%. The simulation results based on the Dijkstra’s algorithm can be fitted to the experimental results to a certain extent. By controlling the number of preferred paths and the weight of nodes, the plugging and regulating performance of the foam are characterized. These findings reflect the necessity of considering fractures when foam flows in reservoirs, and provide a certain experimental basis and theoretical guidance for the development of fractured reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call