Abstract
Alterations of boundary layer separation along the upper-rear surface of a baseline and slit cylinder and the formation of a vortex in the near-wake are investigated by particle image velocimetry (PIV) at Reynolds number 1000. The slit ratio (S/D) is 0.3. The phase-lock flow structures are referred to the time-dependent volume flux at the slit exit and are achieved by the modified phase-averaged technique. The alterations and the evolution of boundary-layer flow along the upper-rear surface are demonstrated by the phase-lock flow structures. It is found that the alternate blowing and suction at the slit exit serves as a perturbation to the boundary layer near the shoulder of the slit cylinder leading to a significant delay of flow separation and the flow reattachment of boundary-layer flow along the upper-rear surface of the cylinder. After perturbation, the vortex street behind a slit cylinder is more organized and stronger than that behind a baseline cylinder at Reynolds number 1000.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.