Abstract

The frictional pressure drops and two-phase flow patterns of gas-liquid two-phase flow in mini-micro pipes and at vena contract and expansion were investigated experimentally. Test liquid was water; test gas was argon. The diameter of the test mini-pipe was 0.5, 0.25 and 0.12 mm, respectively. The pressure drop data and the flow pattern were collected over 2.1 < Ug < 92.5 m/s for the superficial gas velocity and 0.03 < Ul < 10 m/s for the superficial liquid velocity. The experimental results show that the flow patterns were slug, churn, ring and annular flows; pure bubbly flow pattern was not observed in a range of the present experimental conditions. The two-phase friction multiplier data for D > 0.5 mm showed to be in good agreement with the conventional correlations. On the other hand, the two-phase friction multiplier data for D < 0.25 mm differed from the calculated values by the conventional correlations. Then, thickness of liquid film around a gas plug and size of gas core were estimated and the effect of frictional pressure drop on channel size was discussed through Knudsen Number of gas and instability on liquid-gas interface. The coefficients of sudden enlargement and sudden contraction in mini-pipes for the gas-water two-phase flow were modified from the present experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.