Abstract
The bulldozer is a mobile earthmoving machine with a differentially steered mobile base and an onboard manipulator used for soil cutting and transportation. Grading the ground to match a desired contour is an end-effector path-following task, with required joint rates dependent on mobile base motion. The offline planning of travel velocity profiles that respect the available hydraulic flowrate limits is difficult due to uncertainties in the machine–soil interactions. Hence, we propose a flow-bounded velocity controller enabling accurate automatic grading with online velocity scaling. The capacity of hydrostatic transmission and manipulator actuators, as well as the desired velocity, are considered when deciding the commanded velocity reference for the mobile base. Our dynamic simulation results show that, with the proposed controller, a desired ground profile is cut accurately when the machine operates at its performance limits. Comparison to constant velocity driving shows that errors in blade positioning are reduced dramatically. Constant velocity selected to keep the flow within limits results in longer completion times compared to our solution, making it more time optimal. Furthermore, the rpm of the diesel engine can be reduced to save fuel without compromising control performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.