Abstract

Micro-channel-based evaporators are a promising option for high heat flux cooling applications. Micro-channels offer several advantages, including a smaller coolant inventory, superior heat transfer performance, compactness, lightness of weigh. Despite being attractive, the governing phenomena in micro-channels, especially during phase change, are less understood. This article reports the experimental flow boiling heat transfer results of refrigerants R134a and R245fa in a horizontal micro-channel. A series of experiments was conducted to measure the heat transfer coefficients in a circular micro-channel made of fused silica having an internal diameter of 781 μm and a uniformly heated length of 191 mm. The outer surface of the test tube was coated with a thin, electrically conductive layer of indium-tin-oxide. The surface coating with the electrically conductive layer of indium-tin-oxide made it possible to visualize the flow boiling process simultaneously with uniform heating of the test section. R134a and R245fa were used as working fluids and experiments were performed at a system pressure of 7.7 bar for R134a and at 1.8 bar for R245fa, corresponding to saturation temperature of 30°C. Mass flux was varied from 175 kg/m2s to 500 kg/m2s, and heat flux ranged from 5 kW/m2 to 60 kW/m2. A high-speed camera was used to capture the images in the case of flow boiling of R134a. The experimental results indicated that the heat transfer coefficient increased with heat flux while the mass flux proved to have a negligible effect on heat transfer coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call