Abstract

Commercial purity Ti was subjected to equal channel angular pressing (ECAP) for up to three passes at 400oC using a die with die angle of 120o. Compression testing of the ECAP specimens was carried out to determine the subsequent flow behavior. Two types of compression test specimen orientations, one parallel to the axis of ECAP and the other at 45o to the axis of the ECAP, were prepared from the specimens subjected to ECAP. Anisotropy in flow behaviour (as indicated by values of strength co-efficient, K and strain hardening exponent, n) was observed. The strain hardening rates were also calculated from the experimentally determined flow curves for the specimens tested in compression in the two orientations. The results have been interpreted in terms of the strain path change parameter between the two deformation steps (ECAP and compression). Strain hardening behaviour and microstructure evolution is discussed in terms of strain path change parameter. Specimens compressed in the direction parallel to the ECAP direction had lower strain hardening exponents while exhibiting higher initial flow stresses. The strain hardening rates were lower for specimens compressed at 45o to the ECAP direction compared to specimens compressed parallel to the ECAP direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.