Abstract

Abstract Anisotropy of magnetic susceptibility (AMS) data reveal heterogeneous pyroclastic flow processes and variable flow directions within the intra-caldera setting of the Permian rhyolitic welded Ora ignimbrite. Magnetic fabric is primary, orientated during the pyroclastic flow emplacement, and is controlled by paramagnetic and ferromagnetic mineral phases. The ignimbrite has typically weak mean magnetic susceptibilities (1.32–21.8×10 −4 SI) but with a large spread and low anisotropy degrees (1.003–1.023), which vary in different parts of the caldera. The intra-caldera magnetic fabric provides significant information on the dynamics of the intra-caldera setting, relating to changing vertical and lateral flow emplacement processes. AMS shape ellipsoids range from oblate to prolate; these are interpreted to reflect the heterogeneous nature of the flow resulting from the influence of underlying topography, constraints of the caldera walls, primary welding and post-emplacement mineral growth. We have identified different depositional units and possible eruptive source regions, indicating that more than one source fissure vent was active during eruption within this caldera system. The lateral variations demonstrate a meandering of flow pulses. The caldera margin acts as an obstacle in preventing and rebuffing certain flows from scaling the caldera margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.