Abstract

To understand how to tailor microstructure of high-Co polycrystalline superalloys during hot processing, the flow curves of a nickel-based superalloy with high Co content was quantitatively analyzed, and the microstructure evolution was studied by a high-throughput method. The results suggested that hot working conditions, especially the temperature, strongly influenced the grain structure at annealing. In specific, deforming under low strain rate and high temperature conditions facilitated the recovery and grain growth to consume the stored strain energy, furthermore, the weakened pinning effects of γ′ precipitates accelerated these procedures, which made the high-Co superalloy more vulnerable to the formation of abnormally large grains during subsequent supersolvus annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.