Abstract
The flow by a plane stream of an ideal liquid around a cylindrical shell of zero flexural stiffness (a soft cylindrical shell), or a gas bubble on the boundary of which forces of tension act, was studied in [1–6]. The flow around an elastic plate in a linear formulation was considered in [7, 8]. We consider the flow, around a flexible cylindrical shell which possesses a flexural stiffness and at the same time admits large displacements, by a plane system of an ideal incompressible liquid. An application of methods of the theory of functions of a complex variable leads to an effective solution of the problem. The shape of the shell, the forces in it, the forces acting on the shell, and the field of velocities of the flow of the liquid are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.