Abstract

There are numerous turbulence models that have been developed in the past years, many of them being used in predicting flows, turbulence, mass and/or heat transfer. The particular case of an impinging jet implies all of the above. The performance of eight highly used Reynolds averaged Navier-Stokes turbulence models is examined in simulating a very sheared lobed impinging jet. The study is based on the investigation of an orthogonally lobed jet, impinging on a flat surface that flows out from a nozzle having a cruciform cross-section at a Reynolds number of 5620. Two experimental methods were implied for the comparison with numerical results. For the measurement of the wall shear rate an electrodiffusion method was employed. The velocity flow fields were measured using particle image velocimetry technique. The relative strengths and drawbacks of the SST k-ω, k-ω, TransSST, k-e realisable, RNG k-e, k-e, k-kl-ω and RSM turbulence models are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.