Abstract

The current demands for high performance gas turbine engines can be reached by raising combustion temperatures to increase power output. Predicting the performance of a combustor is quite challenging, particularly the turbulence levels that are generated as a result of injection from high momentum dilution jets. Prior to predicting reactions in a combustor, it is imperative that these turbulence levels can be accurately predicted. The measurements presented in this paper are of flow and thermal fields produced in a large-scale combustor simulator, which is representative of an aero-engine. Three-component laser Doppler velocimeter measurements were made to quantify the velocity field while a rake of thermocouples was used to quantify the thermal field. The results indicate large penetration depths for the high momentum dilution jets, which result in a highly turbulent flow field. As these dilution jets interact with the mainstream flow, kidney shaped thermal fields result due to counter-rotating vortices that develop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call