Abstract

Differing from the conventional no-slip wall boundary condition, the moving surface may have strong influences on the flow structures and the flow physics. Such effects are potentially important and useful for flow control. In this paper we analyze the two-dimensional flow over a roller array with different spacing and rotating speeds at the low Reynolds numbers. The numerical results indicate that the pressure drag and the friction drag of the rollers are strongly dependent on flowing and geometric parameters. Physically, surface motion can induce the viscous traction stream, which leads to very important effects, such as the so called impingement block and traction stream flush. These interesting findings may help to better understand the fluid dynamics for the general moving boundary cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.