Abstract
In this study, convergent nozzles of various area ratios (ARs) are used downstream of an annular rotating detonation combustor (RDC) to increase the operating pressure and approach sonic conditions at the nozzle throat. Reactant methane and oxygen-enriched air (67% O2 and 33% N2 by volume) are supplied in counterflow arrangement from two separate plenums located at the base of the RDC annulus. Based on experimentation, a total mass flow rate of 0.32 kg/s was chosen to achieve stable, single-wave mode RDC operation for all test cases, allowing for one-to-one comparisons. The internal performance of the RDC was characterized by ion probes and pressure measurements (wall static and oscillating) in supply plenums and across different axial locations of the combustor. Particle image velocimetry (PIV) at 100 kHz was utilized to measure axial and circumferential velocity components within a two-dimensional region of interest located downstream of the converging nozzle exit. Results show higher internal performance of the RDC with increasing AR of the convergent nozzle. PIV measurement illustrated that the flow oscillation amplitudes decrease with an increasing AR of the converging nozzle. The exit flow contained significant nonuniformity and unsteadiness even with a converging nozzle of AR 2.0, indicating incomplete choking of the flow at the nozzle throat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.