Abstract
Flow and noise solutions of the two Large-Eddy Simulation (LES) approaches are evaluated for the jet flow conditions corresponding to a benchmark coaxial jet case from the European Union Computation of Coaxial Jet Noise experiment. The jet is heated and issues for a short-cowl axisymmetric nozzle with a central body at a transonic speed. The first LES method is based on the Compact Accurately Boundary-Adjusting High-Resolution Technique (CABARET) scheme, for which implementation features include asynchronous time stepping at an optimal Courant–Friedrichs–Lewy number, a wall model, and a synthetic turbulence inflow boundary condition. The CABARET LES is implemented on Graphics Processing Units. The second LES approach is based on the hybrid Reynolds-average Navier–Stokes (RANS)/implicit LES method that uses a mixture of a high-order Roe and Monotonicity-Preserving reconstruction of the 9th order (MP9 scheme) and a wall distance model of the improved delayed detached-eddy simulation type. The RANS/implicit LES method is run on a Message Passing Interface (MPI) cluster. Two grid generation approaches are considered: the unstructured grid using OpenFOAM utility snappyHexMesh and the conventional structured multiblock body-fitted curvilinear grid. The LES flow solutions are compared with the experiment and also with solutions obtained from the standard axisymmetric RANS method using the turbulence model. For noise predictions, the LES solutions are coupled with the penetrable surface formation of the Ffowcs Williams–Hawkings method. The results of noise predictions are compared with the experiment, and the effect of different LES grids and acoustic integration surfaces is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.