Abstract

Flow and noise predictions for the tandem cylinder benchmark are performed using lattice Boltzmann and Ffowcs Williams–Hawkings methods. The numerical results are compared to experimental measurements from the Basic Aerodynamic Research Tunnel and Quiet Flow Facility (QFF) at NASA Langley Research Center. The present study focuses on two configurations: the first configuration corresponds to the typical setup with uniform inflow and spanwise periodic boundary condition. To investigate installation effects, the second configuration matches the QFF setup and geometry, including the rectangular open jet nozzle, and the two vertical side plates mounted in the span to support the test models. For both simulations, the full span of 16 cylinder diameters is simulated, matching the experimental dimensions. Overall, good agreement is obtained with the experimental surface data, flow field, and radiated noise measurements. In particular, the presence of the side plates significantly reduces the excessive spanwise coherence observed with periodic boundary conditions and improves the predictions of the tonal peak amplitude in the far-field noise spectra. Inclusion of the contributions from the side plates in the calculation of the radiated noise shows an overall increase in the predicted spectra and directivity, leading to a better match with the experimental measurements. The measured increase is about 1 to 2 dB at the main shedding frequency and harmonics, and is likely caused by reflections on the spanwise side plates. The broadband levels are also slightly higher by about 2 to 3 dB, likely due to the shear layers from the nozzle exit impacting the side plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call