Abstract

Peptidomimetics, such as oligo-N-alkylglycines (peptoids), are attractive alternatives to traditional cationic cell-penetrating peptides (such as R9) due to their robust proteolytic stability and reduced cellular toxicity. Here, monomeric N-alkylglycines, incorporating amino-functionalized hexyl or triethylene glycol (TEG) side chains, were synthesized via a three-step continuous-flow reaction sequence, giving the monomers N-Fmoc-(6-Boc-aminohexyl)glycine and N-Fmoc-((2-(2-Boc-aminoethoxy)ethoxy)ethyl)glycine in 49% and 41% overall yields, respectively. These were converted into oligomers (5, 7, and 9-mers) using an Fmoc-based solid-phase protocol and evaluated as cellular transporters. Hybrid oligomers, constructed of alternating units of the aminohexyl and amino-TEG monomers, were non-cytotoxic and exhibited remarkable cellular uptake activity compared to the analogous fully TEG or lysine-like compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.