Abstract

A structured stormwater infiltration system was developed and constructed at a university campus and monitoring of storm events was performed during a one- year operation period. The flow and pollutant mass balances were analyzed and the overall efficiency of the system was assessed. While significant positive correla- tions were observed among rainfall, runoff and discharge volume (R 2 = 0.93-0.99; p<0.05), there was no sig- nificant correlations existed between rainfall, runoff, discharge volume and pollutant load. The system was more effective in reducing the runoff volume by more than 50% for small storm events but the difference between the runoff and discharge volume was significant even with rainfall greater than 10 mm. Results showed that the pollutant reduction rates were higher compared to the runoff volume reduction. Average pollutant reduction rates were in the range of 72% to 90% with coefficient of variation between 0.10 and 0.46. Comparable with runoff reduction, the system was more effective in reducing the pollutant load for small storm events, in the range of 80% to 100% for rainfall between 0 and 10 mm; while 65% to 80% for rainfall between 10 and 20 mm. Among the pollutant parameters, particulate matters was highly reduced by the system achieving only a maximum of 25% discharge load even after the entire runoff was completely discharged. The findings have proven the capability of the system as a tool in stormwater manage- ment achieving both flow reduction and water quality improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call