Abstract

This paper presents a numerical computations are performed to investigate the convective heat transfer characteristics of a gas turbine can combustor under cold flow conditions in a Reynolds number range between 50,000 and 600,000 with a characteristic swirl number of 0.7. The RNG (K-ε Model) predictions are compared with the experimental data of local heat transfer distribution on the combustor liner wall. It was observed that the flow field in the combustor is characterized by an expanding swirling flow, which impinges on the liner wall close to the inlet of the combustor. The impinging shear layer is responsible for the peak location of heat transfer augmentation. It is observed that as Reynolds number increases, the peak heat transfer augmentation ratio (compared with fully developed pipe flow) reduces from 10.5 to 2.7. Additionally, the peak location does not change with Reynolds number since the flow structure in the combustor is also a function of the swirl number. The heat transfer coefficient distribution on the liner wall predicted from the RNG (K-ε Model) is in good agreement with experimental values. The location and the magnitude of the peak heat transfer are predicted in very close agreement with the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.