Abstract
Purpose As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack analysis of flow mechanisms. Owing to computational difficulties, few people use numerical algorithms to combine them for discussion. Hence, this study aims to make a deep inquiry into the laminar flow and heat transfer of compressible Newtonian fluid in hypersonic aircraft with small attack angles. Design/methodology/approach In this paper, on the basis of mass, momentum and energy conservation laws, the governing equations of the hypersonic boundary layer are established. Viscosity, specific heat capacity and thermal conductivity are considered nonlinear functions concerning temperature. In virtue of the MacCormack finite difference method, the stationary numerical solutions are solved directly, and the validity of the algorithm is verified. Findings The results demonstrate that at Mach number 5, compared to the 0° attack angle, the maximum temperature near-wall at the 3° attack angle increases by about 25%. An enjoyable phenomenon is discovered, where the position corresponding to the maximum wall shear force shifts back as the attack angle and Mach number increase. The relationship between the near-wall maximum temperature versus attack angle and Mach number is fitted through numerical calculation results. Originality/value Empirical formulas can be used to estimate heat transfer characteristics at small attack angles, which will guide the design of aircraft thermal protection systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.