Abstract

This article presents the study of heat transfer under the influence of mixed convective flow of Eyring-Powell fluid over a stratified stretching sheet. The impact of heat generation/absorption is also discussed. The fluid is considered to be a viscous, incompressible, two dimensional, and laminar. Transformation, based on the similarity variables, is used for the alteration of modeled governing partial differential equations (PDEs) into ordinary differential equations (ODEs). The shooting approach is introduced to accomplish the mathematical solution of governing equations. Runge-Kutta method of order four is used for the integration purpose and Newton’s method helps to refine initial guesses. All the programming is done on MATLAB. The effects of emerging parameters on temperature and velocity profiles are discussed through graphs. The related physical properties of flow, i.e., the skin friction coefficient and Nusselt number are described graphically for various parameters. Numerical values for the Nusselt number and skin friction coefficient are tabulated for the various parameters. It is noted that increment in thermal stratification parameter yields fall in both velocity and temperature of fluid and a reverse relation is observed for the heat generation parameter.

Highlights

  • Heat transfer is a mechanism through which internal energy is transferred from one material to another

  • It is extremely important to study the impact of heat transfer in various materials and boundary layer flows over stretching sheet due to their considerable applications in various biological phenomena, engineering processes, and industrial units like paper production, metal extrusion, fermentation, and bubble absorption [1,2,3,4,5,6,7,8,9,10,11,12,13]

  • Heat transfer occur in three ways known as conduction, convection, and radiation

Read more

Summary

Introduction

Heat transfer is a mechanism through which internal energy is transferred from one material to another. It is one of the key point for the researchers, physicists, engineers, and mathematicians. It is extremely important to study the impact of heat transfer in various materials and boundary layer flows over stretching sheet due to their considerable applications in various biological phenomena, engineering processes, and industrial units like paper production, metal extrusion, fermentation, and bubble absorption [1,2,3,4,5,6,7,8,9,10,11,12,13].

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.