Abstract

The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule–Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. A three-dimensional (3D) computational fluid dynamic (CFD) model considering the phase transition and turbulence was developed to predict the fluid-particle flow and deposition characteristics. The Lagrangian method, Reynold's stress transport model (RSM) for turbulence, and stochastic tracking model (STM) were used. The results show that the model predictions were in good agreement with the experimental data published. The effects of particle size, flow velocity, and pipeline diameter were analyzed. It was found that the increase of the flow velocity would cause the decrease of particle deposition ratio and there existed the critical particle size that causes the deposition ratio maximum. It also presents the four types of particle motions corresponding to the four deposition regions. Moreover, the sudden expansion region is the easiest to be blocked by the particles. In addition, the Stokes number had an effect on the deposition ratio and it was recommended for Stokes number to avoid 3–8 St.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.